
Unit VI: Interference

Interference of light

The phenomenon of redistribution of energy due to

super position of light waves from two coherent sources

is called interference.

Constructive Interference: In constructive

interference the amplitude of the resultant wave is

greater than that of either individual wave.

Destructive Interference: In destructive interference

the amplitude of the resultant wave is less than that of

either individual wave.

Interference can be obtained through two methods

1. Division of Wave front

2. Division of Amplitude

In Division of Wave front, the coherent sources are

obtained by dividing the wavefront, originating from a

common source, by employing pinholes, narrow slits,

mirrors, biprisms or lenses. This class of interference

requires essentially a point source or a narrow slit

source. Examples of interference by division of

wavefront are Young’s Double slit experiment, the

Fresnel biprism, Fresnel mirrors, Lloyd's mirror, etc

In Division of Amplitude, the amplitude of the incident

beam is divided into two or more parts either by partial

reflection or refraction. Thus we have coherent beams

produced by division of amplitude. These beams travel

different paths and are finally brought together to

produce interference. The effects resulting from the

superposition of two beams are referred to as two beam

interference and those resulting from superposition of

more than two beams are referred to as multiple beam

interference. The interference in thin films, Newton's

rings, and Michelson's interferometer are examples of

two beam interference and Fabry-Perot's interferometer

is an example of multiple beam interference.

Why single source is required for 

interference?

Young’s double slit experiment 

If

The experiment 



The Interference Pattern



The Intensity Distribution



This difficulty is overcome by Fresnel's Biprism

experiment as explained below.

From the Young’s Double slit experiment we obtained

the fringe width β of interference pattern which is the

distance between successive bright fringes or

successive dark fringes is determined by the following

equation

Fresnel’s Biprism experiment 

𝛽 =
λ𝐷

𝑑
−−−−−−−−−−−− −(1)

where λ is the wavelength of light , D is the distance

between double slits and screen and d is the distance

between slits S1 and S2 .

Wavelength λ is determined from experimental value

of β and from known values of D and d .

Drawback in Young’s Double slit experiment is the

assumption of monochromatic sources S1 and S2 as

point sources, because it is very difficult to get narrow

slits that act as point source. If we make the slit very

narrow, intensity of light decreases and interference

pattern will be very faint that leads to difficulty in

measurement of fringe-width.

Biprism is formed by merging two narrow prisms at

their base. A narrow slit is paced before biprism so that

slit is in line with centre of biprism. A single wavefront

emerging from the narrow slit is getting refracted.

After refraction , light rays merge together on a screen

to form interference pattern as shown in figure.

Refracted light rays are acting in this process such that

as if they are coming from two virtual point sources of

light as shown in figure. This experimental setup is

identical like Young’s Double slit experiment where we

get interference pattern from two point sources of light

that are in same phase. If we know the distance d

between virtual sources, we use the fringe width

equation as given in Young’s Double slit experiment

and determine the wavelength of monochromatic light .

To determine the distance d between virtual sources we

use images formed by convex lens as shown below

Let us get the image of virtual sources by placing a

convex lens as shown above.

From lens equation we get the relation between the 

distance u and v as
1

𝑣
−
1

𝑢
=
1

𝑓
−−−−−−−−− −(2)



Let us get the image of virtual sources by placing a

convex lens as shown above.

From lens equation we get the relation between the 

distance u and v as
1

𝑣
−
1

𝑢
=
1

𝑓
−−−−−−−−−−− −(2)

where v is lens-to-image distance and u is lens-to-object 

distance

The relation of magnification of image 𝑑1 is

𝑚1 =
𝑑1
𝑑
= −

𝑣

𝑢
−−−−−−−−−− −(3)

When 𝑣 > 𝑢, we get a magnified image.

In the lens equation (2) , u and v are interchangeable.

Hence if we position the convex lens at a distance v

from object , we get a diminished image at a distance v

Now the relation of magnification of the new image 𝑑2
is

𝑚2 =
𝑑2

𝑑
= −

𝑢

𝑣
−−−−−−−−−− −(4)

By multiplying eqn. (3) and eqn. (4) , we get

𝑑1
𝑑
×
𝑑2
𝑑
= −

𝑣

𝑢
× −

𝑢

𝑣
= 1

𝑑2 = 𝑑1𝑑2

Thus,

𝑑 = 𝑑1𝑑2
Hence , using the distance d between virtual sources in 

eqn. (1) and from the measured values of fringe-

width β it is possible to determine the wavelength λ of 

monochromatic light .

Phase change on reflection: Stokes’ 

treatment 

Considering Fig:14.22 (a), the reflected ray of

amplitude ar1 undergoes a π phase shift to that of the

primary incident ray of amplitude a, while the

transmitted ray of amplitude at1 has the same phase as

the incident ray. Now in Fig:14.22 (b), the ray with

amplitude ar1t1 will be in phase with the ray of

amplitude ar1. If we consider the reflected ray of

amplitude at1r2 will undergo a π phase shift on

reflection from medium I from that of the ray of

amplitude at1, the two rays of amplitudes ar1t1 and at1r2

will be in same phase which contradicts Eq. 14.39.

Thus there is no phase change if light coming from a

denser medium is reflected at an interface of a rarer

medium (i.e light incident on medium I from medium II

in case n1 < n2).



Interference by plane parallel film 

when illuminated by a plane wave

Normal incidence:

Oblique incidence:



Interference by plane parallel film 

when illuminated by a point source

(Fringes of equal inclination)





Interference by a wedge-shaped films

(Fringes of equal thickness)





Newton’s Rings

An important application of interference in thin

films is the formation of Newton’s rings. When a plano

convex lens of long focal length is placed over an

optically plane glass plate, a thin air film with varying

thickness is enclosed between them. The thickness of

the air film is zero at the point of contact and gradually

increases outwards from the point of contact. When the

air film is illuminated by monochromatic light

normally, alternate bright and dark concentric circular

rings are formed with dark spot at the centre. These

rings are known as Newton’s rings. When viewed with

white light, the fringes are coloured

The Experiment

Fig. 15.28 The Newton’s Ring set-up



Fig. 15.28 shows an experimental arrangement for

producing and observing Newton’s rings. A

monochromatic source of light S is kept at the focus of

a condensing lens L1. The parallel beam of light

emerging from L1 falls on the glass plate G kept at 45o.

The glass plate reflects a part of the incident light

vertically downwards, normally on the thin air film,

enclosed by the Plano-convex lens L and plane glass

plate P. The reflected beam from the air film is viewed

with a microscope. Alternate bright and dark circular

rings with dark spot as centre is seen.

The formation of Newton’s rings can be explained

on the basis of interference between waves which are

partially reflected from the top and bottom surfaces of

the air film. If t is the thickness of the air film at a point

on the film, the refracted wavelet from the lens has to

travel a distance t into the film and after reflection from

the top surface of the glass plate, has to travel the same

distance back to reach the point again.

Thus, it travels a total path 2t. One of the two

reflections takes place at the surface of the denser

medium and hence it introduces an additional phase

change of π or an equivalent path

difference λ/2 between two wavelets.

∴ The condition for brightness is,

Theory

The thickness of the air film at the point of contact

of lens L with glass plate P is zero. Hence, there is no

path difference between the interfering waves. So, it

should appear bright. But the wave reflected from the

denser glass plate has suffered a phase change

of π while the wave reflected at the spherical surface of

the lens has not suffered any phase change. Hence the

point O appears dark. Around the point of contact

alternate bright and dark rings are formed.

Expression for the radius of the nth dark ring

Let us consider the vertical section SOP of the

Plano-convex lens through its centre of curvature C, as

shown in Fig 5.20. Let R be the radius of curvature of

the Plano-convex lens and O be the point of contact of

the lens with the plane surface. Let t be the thickness of

the air film at S and P. Draw ST and PQ perpendiculars

to the plane surface of the glass plate. Then ST = AO =

PQ = t

Let rn be the radius of the nth dark ring which passes

through the points S and P.

Then SA = AP = rn

If ON is the vertical

diameter of the circle, then

by the law of segments

Fig. 15.29 Radius of

Newton’s Ring

Since R and λ are constants, we find that the radius

of the dark ring is directly proportional to square root of

its order. i.e. 𝑟1 ∝ 1, 𝑟2 ∝ 2 , 𝑟3 ∝ 3 , and so on.

It is clear that the ring gets closer as n increases.

Applications of Newton’s rings

(i) Using the method of Newton’s rings, the

wavelength of a given monochromatic source of light

can be determined. The radius of nth dark ring and

(n+m)th dark ring are given by

Knowing rn+1, rn and R, the wavelength can be

calculated.

(ii) Using the method of Newton’s rings, the

refractive index of a material can be calculated. Let λ𝑎
and λ𝑛 represent the wavelength of light in air and in

the medium (liquid). If 𝑟𝑛 is the radius of the nth dark

ring and 𝑟′𝑛 is the radius of the nth dark ring in liquid,

then



Michelson Interferometer

Determination of wavelength:

If N fringes collapse to the center as the mirror M1
moves by a distance do, then we must have



Determination of wavelength difference:



increases with θ, reaching ~1% at θ = 30°, potentially

destroying the increased accuracy gained by using a

laser light source.

The above equation can be approximated to get

Determination of refractive index of glass plate:

Consider a thin glass plate of thickness t and refractive

index n, inserted normal to the path of one of the two

interfering beams in Michelson interferometer. The

optical path length of the beam through the plate is nt,

while the optical path length through an equal thickness

of air is just t, so the increase in optical path length

caused by inserting the plate is (n–1)t. The beam

traverses the plate twice, so the total path difference

will be 2(n–1)t. If N is the number of fringes displaced

by inserting the plate, then Nλ = 2(n–1)t.

After adjusting the mirrors to obtain circular fringes

with a single central dark spot, the plate is introduced

into the path of one of the interfering beams and the

fringes are displaced. M1 is moved a distance d closer,

until a single central dark spot is again obtained. The

distance d moved is noted and the number of

fringes N that disappear is counted. Then, since the

insertion of the glass plate increased the optical path

length by 2(n–1)t, and the mirror motion decreased it

by 2d, 2d must equal 2(n–1)t, so the refractive

index n of the plate can be calculated from Nλ = 2d =

2(n–1)t.

where t is the thickness of the plate and λ is the

wavelength of the laser. The last term in the numerator

is often neglected. However, this causes an error that

With a laser, the light source is more precisely

monochromatic, so the measurement of n can be

more accurate. In the Michelson interferometer,

if N fringes are displaced when the plate is rotated

through an angle θ from its original orientation

normal to the path, the refractive index of the plate

is
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