Unit VI: Interference

Interference of light

The phenomenon of redistribution of energy due to
super position of light waves from two coherent sources
is called interference.

Constructive Interference: In constructive
interference the amplitude of the resultant wave is
greater than that of either individual wave.

Destructive Interference: In destructive interference
the amplitude of the resultant wave is less than that of
either individual wave.

Interference can be obtained through two methods

1. Division of Wave front
2. Division of Amplitude

In Division of Wave front, the coherent sources are
obtained by dividing the wavefront, originating from a
common source, by employing pinholes, narrow slits,
mirrors, biprisms or lenses. This class of interference
requires essentially a point source or a narrow slit
source. Examples of interference by division of
wavefront are Young’s Double slit experiment, the
Fresnel biprism, Fresnel mirrors, Lloyd's mirror, etc

In Division of Amplitude, the amplitude of the incident
beam is divided into two or more parts either by partial
reflection or refraction. Thus we have coherent beams
produced by division of amplitude. These beams travel
different paths and are finally brought together to
produce interference. The effects resulting from the
superposition of two beams are referred to as two beam
interference and those resulting from superposition of
more than two beams are referred to as multiple beam
interference. The interference in thin films, Newton's
rings, and Michelson's interferometer are examples of
two beam interference and Fabry-Perot's interferometer
is an example of multiple beam interference.

Why single source is required for
interference?

If we use two conventional light sources (like two
sodium lamps) illuminating two pinholes (see Fig. 14.5). we
will not observe any interference pattern on the screen. This
can be understood from the following reasoning: In a con-
ventional light source, light comes from a large number of
independent atoms; each atom emitting light for about 107!
sec. i.e., light emitted by an atom is essentially a pulse last-
ing for only 107" seconds* Even if the atoms were emitting
under similar conditions, waves from different atoms would
differ in their initial phases.

Consequently, light coming out from the holes S, and
S, will have a fixed phase relationship for a period of
about 107'? seconds, hence the interference pattern will keep
on changing every billionth of a second. The eye can notice
intensity changes which last at least for a tenth of a second
and hence we will observe a uniform intensity over the screen.
However, if we have a camera whose time of shutter opening
can be made less than 107" seconds then the film will record
an interference pattern®*. We summarise the above results by
noting that light beams from two independent sources do not
have any fixed phase relationship***, as such they do not
produce any stationary interference pattern,

Young’s double slit experiment

The experiment

Thomas Young in 1801 devised an ingenious but simple
method to lock the phase relationship between the two
sources. The trick lies in the division of a single wavefront
into two: these two split wavefronts act as if they emanated
from two sources having a fixed phase relationship and,
therefore, when these two waves were allowed to interfere, a
stationary interference pattern was obtained. In the actual
experiment, a light source illuminates the pinhole S (see
Fig. 14.6). Light diverging from this pinhole fell on a barrier
which contained two pinholes S, and S, which were very
close to one another and were located equidistant from S.
Spherical waves emanating from S| and S, (see Fig. 14.7)
were coherent and on the screen beautiful interference fringes
were obtained. In order to show that this was indeed an inter-
ference effect, Young showed that the fringes on the screen
disappear when S, (or S,) is covered up. Young explained the
interference pattern by considering the principle of superposi-
tion, and by measuring the distance between the fringes he
calculated the wavelength. Figure 14.7 shows the section of
the wavefront on the plane containing S, S| and .S, (which is
the x — z plane).

Fig. 14.6 Young's arrangement to produce interference pat-
tern.
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Fig. 14.7 Sections of the spherical wavefronts emanating
from S, S, and S, (Adapted from Ref. 14.7; used
with permission).

The Interference Pattern

In this section, we will first obtain an expression for the
fringe width and then we will show that the fringes are
strictly hyperbolic.

Let S, and S, represent the two pinholes of the Young’s
double hole arrangement. We would determine the positions
of maxima and minima on the line ZL" which is parallel to the
x axis and lies in the plane containing S. S, and S, (see Fig.
14.8). We will show that the interference pattern (around the
point () consists approximately of a series of dark and bright
lines perpendicular to the plane of Fig. 14.8; O being the foot
of the perpendicular from the point S on the screen.
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Fig. 14.8 Arrangement for producing Young's interference
pattern.

For an arbitrary point P (on the line LL") to correspond to
a maximum we must have

S,P=S,P=nkin=0,123... (14.17)
Now,
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where in the last step we have replaced S,P + S, P by 2D
which will be valid when D >>> d, x,. For example, for d =
0.02 cm, D =50 ¢cm, and OP = 0.5 cm (which corresponds to
typical values in a light interference experiment) we will have

S,P +S,P = (50 + (0.5 + 1J(50)° + (0.49)°
= 100.005 cm

Thus, if we replace S,P + 8P by 2D, the error involved is
about 0.005%. Using Eqs. (14.17) and (14.19) we obtain

_ nAD
X, = =

(14.20)

Thus. the bright (and dark) fringes are equally spaced and
the distance between two consecutive bright (or dark) fringes
is given by

AD

B =3, = (14.21)

which is the expression for the fringe width.

We will next determine the shape of the interference pat-
tern on the screen LL and show that the fringes are a set of
hyperbolae. We assume the origin to be at the point O and
the z-axis to be perpendicular to the plane of the screen LL”
as shown in Fig. 14.8. The screen L1 corresponds to the
plane z = 0; thus the coordinates of an arbitrary point P on
the screen will be (x. v, 0). The coordinates of the point S,

and S, would be l -%,O,—D.] and [—%,{l—D.. respec-

tively. Thus,

S,P—S,P = [x~%J iy D -

= A (say)
or
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Simple manipulations will give us
(@ =AY = AY? =QE[D2 . %(dz —;\2)]

For A = 0 (zero path difference) we must have x = 0 which
implies that the central (bright) fringe is along the y-axis; this
is rigorously true. In general, the above equation can always
be written in the form

X2 )-'2
a—z - b_2 =1 (14-22)
where
2 A [ 2, 1.2 2 ]
0 = —=—|D* + +(d* - A%)
(d* =A%) 4
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and =D+ n d*-ah (14.23)

Equation (14.22) represents a hyperbola. On rearranging, we
get
172
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Obviously for y* << D, we may neglect ) inside the square
brackets and the loci are straight lines parallel to the y-axis.
Thus, we obtain straight line fringes on the screen. We must
remember that we had assumed point sources and we ob-
tained straight line fringes. It is easy to see that if we had
slits instead of point sources, each pair of points would have
produced the same straight line fringes which would have
overlapped with each other—thus we would again obtain
straight line fringes. The fringes so produced are said to be
non-localized; they can be photographed by just placing a
film on the screen: they can also be seen through an eye-
piece.

1 1/2
. Z(dz N )] (14.24)

The Intensity Distribution

Let E, and E, be the electric fields produced at the point P by
S, and S, respectively (see Fig. 14.8). The electric fields E,
and E, will, in general, have different directions and different
magnitudes. However, if the distances S|P and S, P are very
large in comparison to the distance S,S,, the two fields will
almost be in the same direction. Thus, we may write

E, = iEm cos(z—ﬂ' S,P—(Ur]
and ~ (14.25)

E, = iEUz cos [277 S, P— {.r)rj

where i represents the unit vector along the direction of
either of the electric fields. The resultant field will be given
by

E=E, +E,

= i[E(]] COS(ZTR- SIP—I')I]

¢ Egy cos (27” S,P— mr]:l (14.26)

The intensity (/) will be proportional to the square of the
electric field and will be given by

I=KE* (14.27)
or
I=K {E&l cos? (27” S,P—mr] +
E3, cos (2—'7 5P - (,r)rj +
21
Ey, E,, ycos T (S,P—=S,P)|+
cos [2@ - 27” (S,P slp)]H (14.28)

where K is a proportionality constant.* For an optical beam
the frequency is very large (= 10" sec™") and all the terms
depending on (¢ will vary with extreme rapidity (10'° times in
a second); consequently, any detector would record an aver-
age value of various quantities. Now,

<cos2 (r — 9)) j + Cos [2 (r — 9)]

1
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[sin 2(c1 = O] }

where 7= 2L (= 277 107" sec for an optical beam). For any

practical detector** % <<< 1 and since the quantity between
the curly brackets will always be between —2 and +2, we may
write

1

{cos*(wt - O)) = — (14.29)
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The factor cos (2a — ©) will oscillate between +1 and
-1 and its average will be zero as can indeed be shown math-
ematically. Thus the intensity, that a detector will record, will
be given by

I=I+L+2JI1,cosd  (14.30)

where

5= 27” (S,P—S,P) (14.31)

represents the phase difference between the displacements
reaching the point P from S, and S,. Further

|
I, = ELEOI

represents the intensity produced by the source S; if
no light from S, is allowed to fall on the screen; similarly

L= %KE%E represents the intensity produced by the source

S, if no light from S, is allowed to fall on the screen. From
Eq. (14.30) we may deduce the following:

(a) The maximum and minimum values of cos dare +1 and
—1, respectively; as such the maximum and minimum
values of / are given by

and Timax = (JH : \/g)z
Imin =(\/I_Jg}2

The maximum intensity occurs when

d=2nm, n=0,12,...

(14.32)

or
S,P ~ S\P =nA,
and the minimum intensity occurs when

0=Q2n+Dx.n=0,1,2,...
or

1.
S,P~SP=|n+—=
2 1 (” 2]"’-

Notice that when 7, = 7,, the intensity minimum is zero.
In general, , # I, and the minimum intensity is not zero.
(b) If the holes S| and S, are illuminated by different light
sources (see Fig. 14.5), then the phase difference ¢ will
remain constant for about 107'° sec (see discussion in
Sec. 14.3) and thus § would also vary with time*** ina
random way. If we now carry out the averaging over
time scales which are of the order of 10~ * sec, then



time scales which are of the order of 10~ ® sec, then
(cos&) =0
and we obtain
I=1,+1,
Thus, for two incoherent sources, the resultant inten-
sity is the sum of the intensitics produced by each one
of the sources independently and no interference pat-
tern is observed.
(c) In the arrangement shown in Fig, 14.6, if the distances
S,P and S,P are large in comparison to d, then
I, =1,=1, (say)
and

1=2I,+ 21, cos & =4I, cos’ (14.33)

] R=

The intensity distribution (which is often termed as the
cos? pattern) is shown in Fig. 14.9. :

cos? &

-5n =3n - bid 3n 5n
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Fig. 14.9 The variation of intensity with &.

Fresnel’s Biprism experiment

From the Young’s Double slit experiment we obtained
the fringe width B of interference pattern which is the
distance between successive bright fringes or
successive dark fringes is determined by the following
equation

p= -

where A is the wavelength of light , D is the distance
between double slits and screen and d is the distance
between slits S; and S, .

Wavelength A is determined from experimental value
of B and from known values of D and d .

Drawback in Young’s Double slit experiment is the
assumption of monochromatic sources S, and S, as
point sources, because it is very difficult to get narrow
slits that act as point source. If we make the slit very
narrow, intensity of light decreases and interference
pattern will be very faint that leads to difficulty in
measurement of fringe-width.

This difficulty is overcome by Fresnel's Biprism
experiment as explained below.
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Biprism is formed by merging two narrow prisms at
their base. A narrow slit is paced before biprism so that
slit is in line with centre of biprism. A single wavefront
emerging from the narrow slit is getting refracted.

After refraction , light rays merge together on a screen
to form interference pattern as shown in figure.
Refracted light rays are acting in this process such that
as if they are coming from two virtual point sources of
light as shown in figure. This experimental setup is
identical like Young’s Double slit experiment where we
get interference pattern from two point sources of light
that are in same phase. If we know the distance d
between virtual sources, we use the fringe width
equation as given in Young’s Double slit experiment
and determine the wavelength of monochromatic light .

To determine the distance d between virtual sources we
use images formed by convex lens as shown below
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Let us get the image of virtual sources by placing a
convex lens as shown above.

From lens equation we get the relation between the

distance u and v as
1 _ 1 )



Let us get the image of virtual sources by placing a
convex lens as shown above.

From lens equation we get the relation between the

distance u and v as
1 1 1
—_——= e ———— —-(2)

v u f

where v is lens-to-image distance and u is lens-to-object
distance

The relation of magnification of image d; is

_dy v
My == o T -(3)

When v > u, we get a magnified image.

In the lens equation (2) , u and v are interchangeable.
Hence if we position the convex lens at a distance v
from object , we get a diminished image at a distance v

Now the relation of magnification of the new image d,
is

d
R -4

By multiplying eqn. (3) and eqn. (4) , we get

Thus,

d=,/dd,
Hence , using the distance d between virtual sources in
eqn. (1) and from the measured values of fringe-
width B it is possible to determine the wavelength A of
monochromatic light .

Phase change on reflection: Stokes’
treatment

We will now investigate the reflection of light at an interface
between two media using the principle of optical reversibility.
According to this principle, in the absence of any absorption,
a light ray that is reflected or refracted will retrace its original
path if its direction is reversed.*

Consider a light ray incident on an interface of two media
of refractive indices »; and », as shown in Fig. 14.22(a). Let
the amplitude reflection and transmission coefficients be |
and 1,, respectively. Thus, if the amplitude of the incident ray
is a, then the amplitudes of the reflected and refracted rays
would be ar, and ar,. respectively.

We now reverse the rays and we consider a ray of ampli-
tude af, incident on medium 1 and a ray of amplitude ar
incident on medium 2 as shown in Fig. 14.22(b). The ray of
amplitude at, will give risc to a reflected ray of amplitude

at,r, and a transmitted ray of amplitude ar,t, where r, and 1,
are the amplitude reflection and transmission coefficients
when a ray is incident from medium 2 on medium 1. Similarly,
the ray of amplitude ar, will give rise to a ray of amplitude
ar] and a refracted ray of amplitude ar,,. According to the
principle of optical reversibility the two rays of amplitudes
ar’; and a1, must combine (o give the incident ray of Fig,
14.22(a); thus,

2
ar; t+ atjt, =a

or

-

hty=1-7 (14.38)

Further, the two rays of amplitudes at,r, and ar,f, must can-
cel each other, i.e..

atyry + arif; =0

or
(14.39)
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Fig. 14.22 (a) A ray traveling in a medium of refractive in-
dex 1y incident on a medium of refractive index
1,. (b) Rays of amplitude ar, and at, incident on
a medium of refractive index 1.

Since we know from the Lloyd’s mirror experiment that an
abrupt phase change of & occurs when light gets reflected
by a denser medium, we may infer from Eq. (14.39) that no
such abrupt phase change occurs when light gets reflected
by a rarer medium. This is indeed borne out by experiments.
Equations (14.38) and (14.39) are known as Stokes’ relations.

Considering Fig:14.22 (a), the reflected ray of
amplitude ar, undergoes a m phase shift to that of the
primary incident ray of amplitude a, while the
transmitted ray of amplitude at, has the same phase as
the incident ray. Now in Fig:14.22 (b), the ray with
amplitude ar;t; will be in phase with the ray of
amplitude ar,. If we consider the reflected ray of
amplitude at;r, will undergo a m phase shift on
reflection from medium I from that of the ray of
amplitude at,, the two rays of amplitudes ar,t; and atr,
will be in same phase which contradicts Eq. 14.39.
Thus there is no phase change if light coming from a
denser medium is reflected at an interface of a rarer
medium (i.e light incident on medium I from medium II
in case n; <n,).



Interference by plane parallel film
when illuminated by a plane wave

Normal incidence:
If a plane wave is incident normally on a thin* film of uniform
thickness d (see Fig. 15.1) then the waves reflected from the
upper surface interfere with the waves reflected from the
lower surface. In this section, we will study this interference
pattern. In order to observe the interference pattern without
obstructing the incident beam, we use a partially reflecting
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Fig. 151 The normal incidence of a parallel beam of light
on a thin film of refractive index n and thickness

d. G denotes a partially reflecting plate and P
represents a photographic plate.

plate G as shown in Fig. 15.1. Such an arrangement also en-
ables us to eliminate the direct beam from reaching the
photographic plate P (or the eye). The plane wave may be
produced by placing an illuminated pinhole at the focal point
of a corrected lens: alternatively, it may just be a beam com-
ing out of a laser.

Let the solid and the dashed lines in Fig. 15.2 represent
the positions of the crests** (at any particular instant of
time) corresponding to the waves reflected from the upper
and lower surfaces of the film, respectively. *** Clearly, the
wave reflected from the lower surface of the film traverses an
additional optical path of 2nd, where n represents the refrac-
tive index of the material of the film. Further, if the film is
placed in air, then the wave reflected from the upper surface
of the film will undergo a sudden change in phase of 7T (see
Sec. 14.12) and as such the conditions for destructive or con-
structive interference will be given by

2nd =m4. destructive interference (15.1a)

= [m [ %]zt constructive interference  (15.1b)

where m =0, 1, 2,...and A represents the free space wave-
length.

Thus, if we place a photographic plate at P (sec Fig. 15.1),
then the plate will reccive uniform illumination; it will be

dark when 2nd = mA and bright when 2nd = (m - %) Aim=

0, 1, 2,... Instead of placing the photographic plate, if we try

T _______________________ 1
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Fig. 15.2 The solid and the dashed lines represent the
crests of the waves reflected from the upper
surface and from the lower surface of the thin
film. Notice that the distance between the
consecutive crests inside the film is less than the
corresponding distance in medium L

to view the film (from the top) with naked eye, then the film
will appear to be uniformly illuminated.

It may be noted that the amplitudes of the waves reflected
from the upper and lower surfaces will, in general, be slightly
different: and as such the interference will not be completely
destructive. However, with appropriate choice of the refrac-
tive indices of media II and III, the two amplitudes can be
made very nearly equal (see Example 15.1).

For an air film between two glass plates (see Fig. 15.3) no
phase change will occur on reflection at the glass-air inter-
face, but a phase change of 7 will occur on reflection
at the air-glass interface and the conditions for maxima
and minima will remain the same. On the other hand, if the I
medium is crown glass (n = 1.52), the II medium is an oil of
refractive index 1.60 and the III medium is flint glass
(n = 1.66) then a phase change of 7 will occur at both the
reflections and the conditions for maxima and minima would
be

2nd = (m + %) A minima (15.2a)
=mA maxima (15.2b)
Glass
Air
Glass

Fig. 15.3 Thin film of air formed between two glass plates.

In general, whenever the refractive index of the IT medium
lies in between the refractive indices of the I and the IIT me-
dia, then the conditions of maxima and minima would be
given by Eqs. (15.2a) and (15.2b).

Oblique incidence:

We next consider the oblique incidence of the plane wave
on the thin film (see Fig. 15.4). Once again, the wave reflected
from the upper surface of the film interferes with the wave
reflected from the lower surface of the film. The latter
traverses an additional optical path A. which is given by (see
Fig. 15.5):



A =ny(BD + DF) — n,BC (15.3)

where C is the foot of the perpendicular from the point ¥ on
BG.

Fig. 15.4 The oblique incidence of a plane wave on a thin
film. The solid and dashed lines denote the
boundary of the wave reflected from the upper
surface and from the lower surface of the film.
The eye E receives the light reflected from the
region OR.

Let #and & denote the angles of incidence and refraction
respectively. We drop a perpendicular BJ from the point B on
the lower surface LL" and extend B/ and FD to the point B
where they meet (see Fig. 15.5). Clearly,

#JBD = /BDN= /NDF=§&

where N is the foot of the perpendicular drawn from the point
D on BF. Now,

/BDJ = % @

and ZBDJ =m1- H% - 9’] +0 + 9’] = % -

Thus, BD =BD" and BJ/=JB'=d
or BD+DF =B'D+DF=BF

Hence, A =n,BF-nBC

Now, /CFB=_.,CBX=8

(15.7)

BC =BFsin 0= KF

sin 0= 2 KF  (15.8)
my

sin @

Fig. 15.5 Calculation of the optical path difference be-
tween the waves reflected from the upper surface
of the film and from the lower surface of the
film. The solid and the dashed lines represent the
corresponding positions of the crests. P denotes

a photographic plate.

where K is the foot of the perpendicular from B on B'F. Sub-

stituting the above expression for BC in Eq. (15.7), we get
A =n,BF - nKF = n,B'K

or A = 2n,d cos & (15.9)

which is known as the cosine law.

For a film placed in air, a phase change of 7 will occur
when reflection takes place at the point B and as such, the
conditions of destructive and constructive interference
would be given by
minima

A =2n,d cos & =mA (15.52)

- (m + %] A maxima  (15.5b)

If we place a photographic plate at P (see Fig. 15.5) it will
receive uniform illumination; if we try to view the film with
naked eye (at the position £ — see Fig. 15.4) then only light
rays reflected from a small position QR of the film will reach
the eye. The image formed at the retina will be dark or bright
depending on the value of A (see Eq. 15.5).

Interference by plane parallel film
when illuminated by a point source
(Fringes of equal inclination)

In Sec. 15.2, we had considered the incidence of a parallel
beam of light on a thin film and had discussed the interfer-
ence produced by the waves reflected form the upper and
lower surfaces of the film. We will now consider the illumina-
tion of the film by a point source of light and, once again, in
order to observe the film without obstructing the incident
beam, we will use a partially reflecting plate G as shown in
Fig. 15.19. However, in order to study the interference
pattern we may assume the point source S to be right
above the film (see Fig. 15.20) such that the distance SK
(in Fig. 15.20) is equal to S4 + AK (in Fig. 15.19); K4
(in Fig. 15.19) and K8 (in Fig. 15.20) being normal to the film.
Obviously, the waves reflected from the upper surface of the
film will appear (o emanate from the point S where

KS =KS (15.49)

Fig. 15.19 Light emanating from a point source S is al-
lowed to fall on a thin film of thickness d. G is a
partially reflecting plate and P represents the
photographic plate. On the photographic plate
circular fringes are obtained.

(see Fig. 15.20). Further, simple geometrical considerations
will show that the waves reflected from the lower surface will
appear to emanate from the point S”, where

KS” = KS + 2dIn, (15.50)



(see Fig. 15.20). Equation (15.50) is valid only for near normal
incidence.* Thus, at least for near normal incidence, the
interference pattern produced in region I (see Fig. 15.20) will
be very nearly** the same as produced by two point
coherent sources S and S” (which is the double hole
experiment of Young discussed in the previous chapier).
Thus, if we put a photographic plate P (see Fig. 15.19) we
will, in general, obtain interference fringes. The intensity of an
arbitrary point O [in Fig. 15.20] will be determined by the
following relations:

(15.51a)

A= (m-%)ﬁ. maxima

(15.51h)
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Fig. 15.20 If light emanating from a point source S is inci-
dent on a thin film then the interference pattern
produced in the region I is approximately the
same as would have been produced by two co-
herent point sources §" and S” (separated by a
distance 2d/n,) where d represents the thick-
ness of the film and n, represents the refractive
index of the film.

where A =[nSF+ ny,(FG+ GH)+ n HO]

= [ (4 +40)] (15.52)

represents the optical path difference and we have assumed
that in one of the reflections, an abrupt phase change of 7
occurs; n, and n, are the refractive indices of media I and II
respectively. The above conditions are rigorously correct:
i.e., valid even for large angles of incidence. Further, it can be
shown that for near normal incidence,

A= 2n,dcos &
A more rigorous calculation shows (sec Ref. 15.7]

2 .
A = 2n,dcos & [1— nj_sincos® (90 9)] (15.54)

n% - nlz sin” @ 2

(15.53)

where the angles @, 6}, and @ are defined in Fig, 15.20.

Now, if we put a photographic plate (parallel to the sur-
face of the film (see Fig. 15.20)) we will obtain dark and bright
concentric rings (see Example 14.6).*On the other hand., if we
view the film with naked eye then, for a given position of the
eve, we will be able to see only a very small portion of the
film: e.g., with eve at the position £ and the point source at S
only a portion of the film around the point B will be visible
[see Fig. 15.21(a)], and this point will appear to be dark or
bright as the optical path difference,

A =mSO + ny, (04 + AB) - n,SB

(b)

Fig. 15.21 Light emanating from a point source § is inci-
dent on a thin film; (a) if the film is viewed by
the naked eye E then the point B will appear to
be dark if the optical path [{n; SQ + n, (QA +
AB)} - ny SB] is mA, and bright if the optical
path is (m + %) A. (b) If the eye is focused for in-
finity then it receives parallel rays from
different directions corresponding to different
values of the angles of refraction #" (and hence
different values of the optical path difference).

is mA or (m - %) A. Further, using a method similar to the one
described in Sec. 15.3, we can obtain
A = 2n,d cos (15.55)

Instead of looking at the film, if the eye is focussed at
infinity, then the interference is between the rays which are
derived from a single incident ray by reflection from the up-
per and the lower surfaces of the film [see Fig. 15.21(b)]. For
example, the rays P\ and OR, which focus at the point O of
the retina, are derived from the single ray SP, and the rays
PAM and O'R’, which focus at a different point O on the
retina, are derived from the ray SP’. Since the angles of re-
fraction 07 and @5 (for these two sets of rays) will be
different, the points O and O will, in general, not have the
same intensity.

We next consider the illumination by an extended source
of light § (see Fig. 15.22). Such an extended source may be
produced by illuminating a ground glass plate by a sodium
lamp. Each point on the extended source will produce its own



interference pattern on the photographic plate P; these will
be displaced with respect to one another; consequently, no
definite fringe pattern will appear on the photographic plate.
However, if we view the film with our eye, rays from all points

P

Fig. 15.22 Light emanating from an extended source
illuminates a thin film. G represents the
partially reflecting plate and P represents the
photographic plate. The eye E is focussed at
infinity.

of the film will reach the eye. If the eve is focussed at infinity
then parallel light coming in a particular direction reaching
the eye would have originated from nearby points of the ex-
tended source and the intensity produced on the retina
would depend on the value of 2rd cos € which is the same
for all parallel rays like 5,0, S,0", ctc. (see Fig. 15.22). Rays
emanating in a different dircction (like SR, S,R’, etc.) would
correspond to a different value of 8" and would focus at a
different point on the retina. Since € is constant over the
circumference of a cone (whose axis is normal to the film and
whose vertex is at the eye), the eye will see dark and bright
concentric rings, with the center lying along the direction
& = 0. Such fringes, produced by a film of uniform thickness,
are known as Haidinger fringes. They are also known as
fringes of equal inclination because the changes in the op-
tical path are due to the changes in the direction of incidence
and hence in the value of €. In Sec. 15.10 we will discuss the
Michelson interferometer where such fringes arc observed.

Interference by a wedge-shaped films
(Fringes of equal thickness)

Till now we have assumed the film to be of uniform thick-
ness. We will now discuss the interference pattern produced
by a film of varying thickness. Such a film may be produced
by a wedge which consists of (wo non-parallel plane sur-
faces [see Fig. 15.23(a)].

‘We first consider a parallel beam of light incident normally
on the upper surface of the film [see Fig. 15.23(a)]. In
Fig. 15.23(b) the successive positions of the crests (at a par-
ticular instant of time) reflected from the upper surface and
from the lower surface of the film are shown by solid and
dashed lines, respectively. Obviously, a photographic plate
P will record straight line interference fringes which will be
parallel to the edge of the wedge (the edge is the line pass-
ing through the point O and perpendicular to the plane of the
paper). The dots in the figure indicate the positions of maxima.
In order to find the distance between two consecutive
fringes on the film we note that for the point 4 to be bright*

n(LM+ MA) = [m ; %) A, m=0,1,2,.. (15.56)
[see Fig. 15.23(a)]. However, when the wedge angle ¢ is very
small (which is indeed the case for practical systems)

LM +MA =244

Fig. 15.23 (a) A parallel beam of light incident on a
wedge. (b) The solid and the dashed lines rep-
resent the positions of the crests (at a particular
instant of time) corresponding to the waves re-
flected from the upper surface and from the
lower surface respectively. The maxima will
correspond to the intersection of the solid and
dashed lines. The fringes will be perpendicular
to the plane of the paper.



where 44 represents the thickness of the film at 4. Thus, the
condition for the point A to be bright is

244" = (m+ %] A (15.57)
Similarly, the next bright fringe will occur at the point B where
2nBB’ = [m + %] A (15.58)
Thus, (BB —AA") = A
or XB = Al2n (15.59)
But XB' = (AX) tan ©
AX =f= A 15.60
o P~ % (15.60)

where [3 represents the fringe width and we have assumed
to be small. Such fringes are commonly referred to as fringes
of equal thickness.

On the other hand, for a point source, the fringe pattern
will be similar to the parallel film case: i.e., for near normal
incidence, the pattern will be very nearly the same as pro-
duced by two sources S and S” (Fig. 15.24). (Notice that the
point S” is not vertically below S this is a consequence of
the fact that the two surfaces of the film are not parallel.) The
intensity of an arbitrary point O will be determined by the
following equations:

[S4 +n(AB + BC) + CO] - [SD + DO]
= (m+%] 5, maxima (15.61)

=mA minima

Sn °

Fig. 15.24 Light from a point source illuminating a
wedge. E represents the lens of the eye.

If we view the film with naked eye (say at the position
E — see Fig. 15.24) then only a small portion of the film
(around the point R) would be visible and the point R will be
bright or dark as the optical path difference [{SN + n(NL +
LR)} -SR] is (m + %) Aor mA, respectively. One can similarly
discuss the case when the eye is focussed for infinity.

We next consider the illumination by an extended source
S as shown in Fig. 15.25. Since the extended source can be
assumed to consist of a large number of independent point

sources. each point source will produce its own pattern on a
photographic plate P. Consequently, no definite fringe pat-
tern will be observed.* However, if we view the film with a
camera (or with a naked eve) and if the camera is focussed
on the upper surface of the film then a particular point on the
film will appear dark or bright depending on the fact that
whether 2nd is mA or (m~ %) /. (see Fig. 15.25) — we are
assuming near normal incidence. It may be seen in the figure
that interference at the point O may occur due to light com-
ing from different points on the extended source, but if the
incidence is near normal then the intensity at the point O will
be determined entirely by the thickness of the film at that

II
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Fig. 15.25 Localized interference fringes produced by an
extended source S. Fringes will be seen only
when the eye is focussed on the upper surface of
the film.

place. Similarly, the intensity at the point O will be deter-
mined by the thickness of the film at O"; however, the point
O will be focussed at a different point B’ on the retina of the
eye. The fringes will be straight lines parallel to the edge of
the film OO” (Fig. 15.26). It should be emphasized that all
along we are assuming near normal incidence and the fact
that the wedge angle is extremely small. These assumptions
are indeed valid for practical systems.

Fig. 15.26 The fringes formed by a wedge will be parallel
to the edge OO".

It is of interest to mention that if we focus the camera on
a plane XX", which is slightly above the film, then no definite
interference pattern will be observed. This follows from the



fact that the light waves reaching the point K from S, un-
dergo reflection at the points [, and F, and the light waves
reaching K from S, undergo reflection at the points D, and
F,. Since the thickness of the film is not uniform, the waves
reaching K from S, may produce brightness, whereas the
waves reaching from S, may produce darkness. Thus, in or-
der to view the fringes, one must focus the camera on the
upper surface of the film, and in this sense, the fringes are
said to be localized. It is left as an exercise for the reader to
verify that if the camera is focussed for infinity, no definite
interference pattern will be recorded.

Till now we have assumed the film to be ‘“thin’; the ques-
tion now arises as to how thin the film should be. In order to
obtain an interference pattern, there should be definite phase
relationship between the waves reflected from the upper sur-
face of the film and from the lower surface of the film. Thus
the path difference A (= 2nd cos (') should be small com-
pared to the coherence length.* For example, if we are using
the D, line of an ordinary sodium lamp (4 = 5.890 x
10~ cm). the coherence length is of the order of 1 cm and for
fringes to be visible A should be much less than 1 cm. It
should be pointed out that there is no particular value of A for
which the fringes disappear: but as the value of A increases,
the contrast of the fringes becomes poorer. A laser beam has
a very high coherence length and fringes can be visible even
for path differences much greater than 1 m. On the other
hand, if we use a white light source no fringes will be visible
for A 2210 cm (see Sec. 14.9).

It should be pointed out that interference also occurs in
region III (see Fig. 15.27) between the directly transmitted
beam and the beam which comes out of the film after suffer-
ing two reflections, first from the lower surface and then from
the upper surface of the film. However, the two amplitudes
will be very different and the fringes will have very poor con-
trast (see Example 15.1).

Example 15.1 Consider a film of refractive index 1.36 in air
Assuming near normal incidence (# = (). show that whereas the
amplitudes of the reflected rays (1) and (3) (Fig. 15.27) are nearly
equal, the amplitudes of the transmitted rays (4) and (7) are quite
different. (This is the reason why the fringes observed in transmis-
sion have very poor contrast.)

m @)

(1) (5
I .
Air (ng=1)
Nonreflecting film
I (2) ©
@)
ng(< ng]
Glass (n,)
(4)

Fig. 15.27 In general, whereas the amplitude of (1) and (5)
are nearly the same, the amplitudes of (2) and
(6) are quite different.

Solution: Let the amplitude of the incident ray be a and let the
amplitudes of the rays (1), (2), (3)....be denoted by a,, a..... etc.
Using Eqgs. (15.10a) and (15.10b), we get

l—n 0.36

a; = 1+na=—mﬂ =—0.153a
2 2
L= ———a=——g = 0847
T T 236 !
n-1 0.36
a, = e = 336 X 0.874a = 0.129%a
2 2x 136
as = nfl ay = 336 % 0.129a == 0.149a
2 _ 2x 136
a, = maz = =% X 0.847a = 0.977a
. 2n o = 2n _n—la =2>(1.36><A36a
T a1l a1 n+1 5 (2.36)° }
= 0.023a

We first note that the sign of a5 is opposite to that of @, which
1s a consequence of the fact that a sudden phase change of T occurs
when the ray gets reflected at the point B. Further the magnitude of
a, 1s nearly equal to that of @,. On the other hand | a,| <<| a,|. This
1s the reason why the interference fringes formed in transmission
have poor contrast.

Newton’s Rings

An important application of interference in thin
films is the formation of Newton’s rings. When a plano
convex lens of long focal length is placed over an
optically plane glass plate, a thin air film with varying
thickness is enclosed between them. The thickness of
the air film is zero at the point of contact and gradually
increases outwards from the point of contact. When the
air film is illuminated by monochromatic light
normally, alternate bright and dark concentric circular
rings are formed with dark spot at the centre. These
rings are known as Newton’s rings. When viewed with
white light, the fringes are coloured

_ The Experiment
-y
I
L]
A L
e AN
N’ } :

L ] Air film
MP

0
Fig. 15.28 The Newton’s Ring set-up



Fig. 15.28 shows an experimental arrangement for
producing and observing Newton’s rings. A
monochromatic source of light S is kept at the focus of
a condensing lens L,. The parallel beam of light
emerging from L, falls on the glass plate G kept at 45°.
The glass plate reflects a part of the incident light
vertically downwards, normally on the thin air film,
enclosed by the Plano-convex lens L and plane glass
plate P. The reflected beam from the air film is viewed
with a microscope. Alternate bright and dark circular
rings with dark spot as centre is seen.

Theory

The formation of Newton’s rings can be explained
on the basis of interference between waves which are
partially reflected from the top and bottom surfaces of
the air film. If 7 is the thickness of the air film at a point
on the film, the refracted wavelet from the lens has to
travel a distance ¢ into the film and after reflection from
the top surface of the glass plate, has to travel the same
distance back to reach the point again.

Thus, it travels a total path 27 One of the two
reflections takes place at the surface of the denser
medium and hence it introduces an additional phase
change of @m or an  equivalent  path
difference A/2 between two wavelets.

=~ The condition for brightness is,

A
Path difference, 8 = 2t + o= nki

i
2t = @2n-1) 3

where n = 1, 2, 3 ... and A is the wavelength of light used.

The condition for darkness is,

‘A

i
path difference 6 =2t + B = 2n+1) 2

£ 2t = nA
where n =0,1,2,3 ....

The thickness of the air film at the point of contact
of lens L with glass plate P is zero. Hence, there is no
path difference between the interfering waves. So, it
should appear bright. But the wave reflected from the
denser glass plate has suffered a phase change
of m while the wave reflected at the spherical surface of
the lens has not suffered any phase change. Hence the
point O appears dark. Around the point of contact
alternate bright and dark rings are formed.

Expression for the radius of the n'" dark ring

Let us consider the vertical section SOP of the
Plano-convex lens through its centre of curvature C, as
shown in Fig 5.20. Let R be the radius of curvature of
the Plano-convex lens and O be the point of contact of
the lens with the plane surface. Let t be the thickness of
the air film at S and P. Draw ST and PQ perpendiculars
to the plane surface of the glass plate. Then ST = AO =

PQ=1¢

Let r, be the radius of the n dark ring which passes
through the points S and P.

N
Then SA=AP =r,
6
. If ON is th.e vertical S A P
diameter of the circle, then t
by the law of segments [ |
H s (o]

Fig. 1529 Radius of

Newton’s Ring
SA. AP = OA. AN

r2 = t(2R-t)
rg = 2 Rt (neglecting t2 comparing with 2R}
2
=
2t = =
R

According to the condition for darkness
2t =mni

r,==nRh or r = FerRﬂ,

Since R and A are constants, we find that the radius
of the dark ring is directly proportional to square root of
its order. i.e. 7, x 1, 1, x+/2, 3 V3, and so on.
It is clear that the ring gets closer as n increases.

Applications of Newton’s rings

(i) Using the method of Newton’s rings, the
wavelength of a given monochromatic source of light
can be determined. The radius of n™ dark ring and
(n+m)™ dark ring are given by

r,2=nR. and r2, = (n+m) RA

Knowing r,,,, r, and R, the wavelength can be
calculated.

(il)) Using the method of Newton’s rings, the
refractive index of a material can be calculated. Let A,
and A, represent the wavelength of light in air and in
the medium (liquid). If 7, is the radius of the nth dark
ring and 7', is the radius of the n" dark ring in liquid,
then

rn2 =nR i, ;
nRk4,
l"“nz = nR A, =
; Aa
. 2 [._.l'“I= . ]
" m
n =2



Michelson Interferometer

A schematic diagram of the Michelson interferometer is
shown in Fig. 15.34. S represents a light source (which may
be a sodium lamp) and L represents a ground glass plate so
that an extended source of almost uniform intensity is
formed. 5, is a beam splitter; i.e.. a beam incident on G, gets
partially reflected and partially transmitted. M, and M, are
good quality plane mirrors having very high reflectivity. One
of the mirrors (usually A£,) is fixed and the other (usually 1))
is capable of moving away or towards the glass plate G,
along an accurately machined track by means of a screw. In
the normal adjustment of the interferometer, the mirrors M,
and A/, are perpendicular to each other and G, is at 457 to
the mirror.

Waves emanating from a point P get partially reflected
and partially transmitted by the beam splitter G, and the two
resulting beams are made to interfere in the following man-
ner: The reflected wave [shown as (1) in Fig. 15.34]
undergoes a further reflection at A/, and this reflected wave
gets (partially) transmitted through G: this is shown as (5)
in the figure. The transmitted wave [shown as (2) in
Fig. 15.34] gets reflected by A4, and gets (partially) reflected
by G, and results in the wave shown as (6) in the figure.
Waves (5) and (6) interfere in a manner exactly similar to that
shown in Fig. 15.22. This can easily be seen from the fact that
if x; and x, are the distances of the mirrors A/, and A4, from
the plate G, then to the eye the waves emanating from the
point P will appear to get reflected by two parallel mirrors
[M, and M,” — scc Fig. 15.34] scparated by a distancc
(x, ~x,). As discussed in Sec. 15.7, if we use an extended
source, then no definite interference pattern will be obtained
on a photographic plate placed at the position of the eye.
Instead, if we have a camera focused for infinity, then on the
focal plane we will obtain circular fringes, each circle corre-
sponding to a definite value of @ (see Figs. 15.22 and 15.33);
the circular fringes will look like the ones shown in Fig, 15.36.
Now. if the beam splitter is just a simple glass plate, the beam
reflected from the mirror A, will undergo an abrupt phase
change of 7 (when getting reflected by the beam splitter) and
since the extra path that one of the beams will traverse will
be 2(x, ~x,), the condition for destructive interference will be

2dcos=mA

_____________ M’
LI, ",
X2 X1
(3)] (1) G,

o (4) B

' (2
s f Xp N
B

L (5) (6) M,

v

Fig. 15.34 Schematic of the Michelson interferometer.

wherem=0,1,2,3....... and
d :xl "“JCZ

and the angle € represents the angle that the rays make
with the axis (which is normal to the mirrors as shown in
Fig. 15.35). Similarly, the condition for a bright ring would be

2dc059=[m+%}i

For example, for A= 6> 10~ cm if d= 0.3 mm, the angles at
which the dark rings will occur will be

2= cos [1000}
=07,2.56",3.62", 4447, 5,137, 5.737,6.28", ...

corresponding to m = 1000, 999, 998, 997, 996, 995, ... Thus
the central dark ring in Fig. 15.36(a) corresponds to m = 1000,
the first dark ring corresponds to m = 999, etc. If we now re-
duce the separation between the two mirrors so that = 0.15
mm, the angles at which the dark rings will occur will be [see
Fig.15.36(b)]
- S LB O e o o
8= cos [%] =0",3.62",5.13",6.28", 7.25", ...

where the angles now correspond to m = 500, 499, 498, 497,
496, 495, ...Thus as we start reducing the value of d. the
fringes will appear to collapse at the centre and the fringes
become less closely placed. It may be noted that if d is now
slightly decreased. say from 0.15 mm to 0.14985 mm,

2d=499.54
the dark central spot in Fig.15.36(b) (corresponding to m =
500) would disappear and the central fringe will become
bright. Thus, as d decreases, the fringe pattern tends to col-
lapse towards the centre. (Conversely, if ¢ is increased, the
fringe pattern will expand.)

Determination of wavelength:

If N fringes collapse to the center as the mirror M,
moves by a distance d,, then we must have

2d=mAi
2(d—dy) =(m=N) A

where we have put & = 0 because we are looking at the cen-
tral fringe. Thus,

24,

A=
N

(15.73)
This provides us with a method for the measurement of the
wavelength. For example, in a typical experiment, if one finds
1000 fringes collapse to the center as the mirror is moved
through a distance of 2.90 > 10~ cm, then

A =5800A



Fig. 15.35 A schematic of the formation of circular fringes [Adapted from Ref. 15.7].

The above method was used by Michelson for the stan-
dardization of the meter. He had found that the red cadmium
line (A = 6438.4696 A) is one of the ideal monochromatic
sources and as such this wavelength was used as a refer-
ence for the standardization of the meter. In fact, he defined
the meter by the following relation:

1 meter = 1553164.13 red cadmium wavelengths,

the accuracy is almost one part in 107,

In an actual Michelson interferometer, the beam splitter G,
consists of a plate (which may be about 1/2 cm thick), the
back surface of which is partially silvered and the
reflections occur at the back surface as shown in Fig. 15.37.
It is immediately obvious that the beam (5) traverses the
glass plate thrice and in order to compensate for this addi-
tional path, one introduces a ‘compensating plate” (7, which
is exactly of the same thickness as G,. The compensating
plate is not really necessary for a monochromatic source be-
cause the additional path 2(z — 1)¢ introduced by G, can be
compensated by moving the mirror A/, by a distance (n — 1)
where # is the refractive index of the material of the glass
plate G,.

" @

mﬁ T TiTraT

(5)

N

Fig. 15.37 In an actual interferometer there is also a com-
pensating plate G,.

However, for a white light source it is not possible to si-
multaneously satisfy the zero path-difference condition for
all wavelengths, since the refractive index depends on wave-
length. For example. for A= 6560 A and 4861 A, the refractive
index of crown glass is 1.5244 and 1.5330 respectively. If we
are using a 0.5cm thick crown glass plate as G, then M|

should be moved by 0.2622 c¢cm for A4 = 6560 A and by
0.2665 cm for A = 4861 A, the difference between the two
positions corresponding to over hundred wavelengths!
Thus. if we have a continuous range of wavelengths from
4861 A 10 6560 A, the path difference between any pair of
interfering rays (see Fig. 15.34) will vary so rapidly with
wavelength that we would observe only a uniform white light
illumination. However, in the presence of the compensating
plate (55, one would observe a few colored fringes around the
point corresponding to zero path difference (see Sec. 14.9).

Determination of wavelength difference:

Michelson interferometer can also be used in the measure-
ment of two closely spaced wavelengths. Let us assume that
we have a sodium lamp which emits predominantly two
closely spaced wavelengths 5890 A and 5896 A. The interfer-
ometer is first set corresponding to the zero path
difference.* Near d = 0, both the fringe patterns will overlap.
If the mirror M, is moved away (or towards) the plate G,
through a distance 4, then the maxima corresponding to the
wavelength A, will not, in general, occur at the same angle as
4,. Indeed, if the distance d is such that

2d  2d 1

4_e8_ 2 15.74
A A, 2 (s.74)
and if 2d cos @' = mA,. then 2d cos & = (m+%) A,. Thus,
the maxima of A, will fall on the minima of 4, and conversely,
and the fringe system will disappear. It can easily be seen
that if

2 _2 _,
SR
then interference pattern will again reappear. In general, if
2d 2

AL Ay
is 1/2, 3/2, 5/2,...we will have disappearance of the fringe
pattern and if it is cqual to 1, 2, 3,...then the interference
pattern will appear.

Instead of two discrete wavelengths, if the source con-
sists of all wavelengths, lying between 4 and 4+ AA, then no
interference pattern will be observed if

d__2d 1
A . AL T2
M

(15.75)




or
/12
AA

In this case the fringes will not reappear because we have
a continuous range of wavelengths rather than two discrete

wavelengths (see Sec. 17.2).

2d z

(15.76)

Example 15.4 For a sodium lamp, the distance traversed by

the mirror between two successive disappearances 1s 0.289 mm
Calculate the difference in the wavelengths of the D, and the D,
lines. Assume A = 5890 A.

Solution: When the mirror moves through a distance 0.289 mm,
the additional path introduced 1s 0.578 mm. Thus,

0.578 0578 _
A A+AL
or
L= A (5890x107)
©T 0578 0.578
=6A

Determination of refractive index of glass plate:

Consider a thin glass plate of thickness t and refractive
index n, inserted normal to the path of one of the two
interfering beams in Michelson interferometer. The
optical path length of the beam through the plate is nt,
while the optical path length through an equal thickness
of air is just t, so the increase in optical path length
caused by inserting the plate is (n—1)t. The beam
traverses the plate twice, so the total path difference
will be 2(n—1)t. If N is the number of fringes displaced
by inserting the plate, then NA = 2(n—1)t.

After adjusting the mirrors to obtain circular fringes
with a single central dark spot, the plate is introduced
into the path of one of the interfering beams and the
fringes are displaced. M1 is moved a distance d closer,
until a single central dark spot is again obtained. The
distance d moved is noted and the number of
fringes N that disappear is counted. Then, since the
insertion of the glass plate increased the optical path
length by 2(n—1)t, and the mirror motion decreased it
by 2d, 2d must equal 2(n-1)t, so the refractive
index n of the plate can be calculated from NA = 2d =
2(n—1)t.
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o Q=N Cos6)

With a laser, the light source is more precisely
monochromatic, so the measurement of n can be
more accurate. In the Michelson interferometer,
if N fringes are displaced when the plate is rotated
through an angle 0 from its original orientation
normal to the path, the refractive index of the plate
is ,
2
Qt—NAY(1 - Cos8) + 22

()

2t(1— Cos8)— NA

where t is the thickness of the plate and A is the
wavelength of the laser. The last term in the numerator
is often neglected. However, this causes an error that
increases with 0, reaching ~1% at 8 = 30°, potentially
destroying the increased accuracy gained by using a
laser light source.

The above equation can be approximated to get

21— Cas 8)— NA

(d)

Fig. 15.36 Computer generated interference pattern

produced by a Michelson interferometer.

2. https://www.brainkart.com/article/Newton-s-rings---Experiment,-Theory 566/



