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Module-1: Basic Ideas

1. Introduction

Partial differential equations were originated from the study of surfaces in geometry

and a wide variety of problems arising in mechanics. A good number of famous math-

ematicians investigated numerous problems presented by partial differential equa-

tions during the nineteenth century, as these equations can express many fundamen-

tal laws arising frequently in science and engineering. In fact, such type of equations

have been found to be essential to the theory of surfaces and to the solutions of physi-

cal problems, these two areas being linked by the bridge of the calculus of variations.

Partial differential equations play a significant role in modern mathematics and other

branches of sciences, economics, management, technology and so on.

It is known that almost all physical phenomena obey mathematical laws which

can be formulated by differential equations. This striking fact was first noted by Isaac

Newton (1642 - 1727) after the formulation of the laws of mechanics. Later, it was

found that many partial differential equations govern many physical, chemical and

biological phenomena.

From the very beginning, considerable attention has been given to find the so-

lutions of differential equations with a geometric approach. In fact, the families of

curves and surfaces can be defined by differential equations which can be studied ge-

ometrically. The curves, known as characteristic curves, are very useful in finding a

surface containing the curve and satisfying a given differential equation.

The study of first-order partial differential equations received the attention to the

researchers after the work of A. C. Clairaut (1713 - 1765) on earth’s shape. In 1770,

Lagrange initiated a systematic study on first-order nonlinear partial differential equa-

tions. The author also described the geometrical content of a first-order partial differ-

ential equation and developed the method of characteristics in finding the general

solutions of quasi-linear equations.

Earlier, the theory of second-order linear partial differential equations was mainly

concentrated to mechanics and physics. All these equations can be classified into three

types, viz. Laplace (or potential) equation’s heat (or diffusion) equation and wave
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equation. These equations give much information about more general second order

linear partial differential equations.

During the second half of nineteenth century, considerable attention has also been

given regarding the existence, uniqueness and stability of solutions of partial differ-

ential equations. With the advent of new ideas , new methods and applications, both

analytical and numerical studies of these equations are in progress. However, there

are a large number of problems in partial differential equations which are intractable.

These equations are nonlinear and get applications in diversified fields like continuum

mechanics, plasma physics, nonlinear optics, biomathematics, quantum field theory

and so on.

2. Partial Differential Equations: Definition

A differential equation containing a number of independent variables, one depen-

dent variable along with one or more partial derivatives of the dependent variable, is

called a partial differential equation. In general, it can be written in the form

f (x,y, · · · ,u;ux,uy , · · · ,uxx,uxy , · · · ) = 0, (1)

where the equation is considered in a domain Ω of the n-dimensional space Rn in

the independent variables x,y, · · · ;u is an unknown function of these variables and

ux,uy , · · · ,uxx,uxy , · · · are the partial derivatives of u, the subscripts on u denoting dif-

ferentiations, e.g.

ux =
∂u
∂x

, uxy =
∂2u
∂x∂y

, etc.

The functions u = u(x,y, · · · ) which satisfy the equation (1), are called the solutions of

the equation(1) provided that such functions exist. From these many possible solu-

tions, we have to select one by introducing suitable conditions.

For example, the equations

uuxy −uxuy = 0,

u2
x +u2

xx +uxy − sinu = ey (2)

uxx +uyy = 0

are partial differential equations. The function u(x,y) = ex siny is a solution of the last

equation of (2) as can be easily verified.
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The highest order of the partial derivative appearing in the partial differential

equation is the order of the equation. For example, the equation

uxx +2yuxy +3xuy = cosx, or uuxy −uxuy = 0 (3)

is a second-order partial differential equation and

uxxx +uxyy + xuyy + logu = 0 (4)

is a third-order partial differential equation.

A partial differential equation is said to be linear, if it is linear in the unknown

function and all its derivatives, whose coefficients depend only on the independent

variables. For example, the equation

uxx +2yuxy +3xuyy = 4sinx (5)

is linear.

A partial differential equation is said to be quasi-linear, if it is linear in the highest-

ordered derivative of the unknown function. For example, the equation, known as

Korteweg de Vries (or KdV equation), given by

ut + cuux +uxxx = 0 (6)

is a third-order quasi-linear partial differential equation.

A partial differential equation is called semi-linear, if it is linear in the highest-

ordered derivative of the unknown function and a function containing the dependent

and/or independent variables. For example, the Klein-Gordon equation

utt − c2∇2u +m2u +γup = 0, (p ≥ 2 is an integer) (7)

or the conformal scalar curvature equation

∇2u +K(x)e2u = 0, (8)

where ∇2 ≡ ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
+ · · · , is semi linear. Equation of the form (7) arises in quan-

tum field theory (γ being coupling constant) while equation of the type (8) occurs

in differential geometry to study the scalar curvature of Riemann matrices which are

Euclidean; the metric (dx2 + dy2)e2u has a Gauss curvature K(x,y) if u satisfies the

equation (8).
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Equations which do not belong to above types are known as nonlinear partial dif-

ferential equations. For example, the Monge-Ampére equation

det(uxixj ) = f (x,u) (9)

arising in differential geometry occurs in a nonlinear way.

The most general second-order linear partial differential in n independent vari-

ables x1, x2, · · · , xn has the form

n∑
i,j=1

aijuxixj +
n∑
i=1

biuxi + f u = g, (10)

where, without loss of generality, we assume aij = aji and that each of aij , bi , f and

g is a function of n independent variables. If g = 0, the equation (10) is said to be

homogeneous; otherwise, it is a non-homogeneous partial differential equation.

The general solution of a linear partial differential equation depends on arbitrary

functions in contrast to a linear ordinary differential equation in which an nth order

differential equation is a family of functions depending on n arbitrary constants. For

instance, consider the equation with u = u(x,y):

uxy = 0

which, on integration with respect to x leads to

uy(x,y) = g(y).

Integrating again with respect to y, we get

u(x,y) = h(y) + f (x),

where f (x) and h(y) are arbitrary functions.

If we suppose that u = u(x,y,z) and

uxx = c

where c is constant, then its general solution is

u(x,y,z) = x2 + xf (y,z) + g(y,z)

in which f and g are arbitrary functions of y and z.
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Now, for linear homogeneous ordinary differential equation of order n, a linear

combination of n linearly independent solution is a solution. But, this is not so for par-

tial differential equation since the solution space of every homogenous linear partial

differential equation is infinite dimensional. For example, the differential equation

ux +uy = 0 (11)

where u = u(x,y), on substitution ξ = x + y, η = x − y, can be transformed into the

equation

uξ = 0

whose general solution is

u(x,y) = f (x − y)

where f (x − y) is an arbitrary function and so each of the functions (x − y)n, sin(x − y),

exp{n(x − y)}, · · · , where n = 1,2, · · · , is a solution of the equation (11).

3. Mathematical Problems

The problem of determining an unknown function of a partial differential equation

is solved by satisfying supplementary conditions like initial and/or boundary condi-

tions. As an illustration, consider a thin homogeneous perfectly flexible string under

uniform tension along the x-axis in its equilibrium position, the ends of the string

being fixed at x = 0 and x = L. The string is pulled aside a short distance and then

released. In the absence of external forces which corresponds to free vibrations, the

subsequent motion of the string is described by the solution u(x, t) of the following

problem:

Partial differential equation:
∂2u

∂t2
= c2

∂2u

∂x2
, 0 ≤ x ≤ L, t > 0

Initial conditions: u(x,0) = f (x),
∂u(x,0)

∂t
= g(x)

Boundary conditions: u(0, t) = 0, u(L,t) = 0, t > 0

This problem is known as initial-boundary value problem.

If we like to consider a problem of unbounded medium, then the solution can be

obtained uniquely by prescribing initial conditions only. The corresponding problem

is known as initial-value problem or Cauchy problem. For example, in investigating the
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one-dimensional heat flow for an infinite region subject to an initial temperature f (x),

the problem is described by

∂u
∂t

= k
∂2u

∂x2
, −∞ < x <∞, t > 0

and u(x,0) = f (x), −∞ < x <∞.

A mathematical problem is said to be well-posed if it satisfies the following require-

ments:

(i) existence, i.e. there is at least one solution,

(ii) uniqueness, i.e. there is at most one solution,

(iii) continuity, i.e. the solution depends continuously on the data.

Example 1: Find the general solution of ∂2u
∂x2

+ ∂u
∂x = 0.

Solution: Putting ∂u
∂x = v, the given equation reduces to ∂v

∂x + v = 0, which gives an

integration w.r.t. x, ∂u
∂x = v = a(y)e−x and a further integration leads to the general

solution as

u(x,y) = b(y)− a(y)e−x,

a(y) and b(y) being arbitrary functions of y.

Example 2: Show that the general solution of ∂2u
∂t2

= c2 ∂
2u

∂x2
is given by u(x, t) = f (x −

ct) + g(x+ ct), where f and g are arbitrary twice differentiable functions.

Solution:

Since u(x, t) = f (x − ct) + g(x+ ct), so
∂2u

∂t2
= c2f ′′(x − ct) + c2g ′′(x+ ct)

and
∂2u

∂x2
= f ′′(x − ct) + g ′′(x+ ct)

It then readily follows that ∂2u
∂t2

= c2 ∂
2u

∂x2
and thus u(x, t) = f (x − ct) + g(x + ct) is the

general solution of this equation.

Example 3: Show that u = f (xy), where f is an arbitrary differential function, satisfies

the equation

x
∂u
∂x
− y∂u

∂y
= 0

and hence verify that cos(xy), log(xy), exy are also solutions of this equation.
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Solution: We have u = f (xy), so that ∂u
∂x = yf ′(xy), ∂u

∂y = xf ′(xy) and thus x∂u
∂x − y

∂u
∂y =

xyf ′(xy)− yxf ′(xy) = 0. Hence u = f (xy) satisfies the equation x∂u
∂x − y

∂u
∂y = 0.

Now, if u = cos(xy), then ∂u
∂x = −y sin(xy), ∂u

∂y = −x sin(xy) so that x∂u
∂x − y ∂u

∂y =

−xy sin(xy) + yx sin(xy) = 0. Thus cos(xy) is a solution of the given equation. Simi-

larly, log(xy) and exy are also solutions of the equation.

Example 4: If u satisfies the Laplace’s equation ∇2u = ∂2u
∂x2

+ ∂2u
∂y2

= 0, then show that xu

and yu satisfy the biharmonic equation ∇4
 xu

yu

 = 0, but they do not satisfy Laplace’s

equation.

Solution:

We have ∇2(xu) =
(
∂2

∂x2
+

∂2

∂y2

)
(xu) = 2

∂u
∂x

+ x∇2u = 2
∂u
∂x
, 0

and ∇4(xu) = ∇2
(
2
∂u
∂x

)
= 2

∂
∂x

(
∇2u

)
= 0,

Similarly, ∇2(yu) = 2
∂u
∂y
, 0, ∇4(yu) = 0.

Hence the result.

4. Surfaces and Curves

Let (x,y,z) be the coordinates of a point P referred to a three-dimensional cartesian

system of axes and the coordinates are connected by a relation of the form

F(x,y,z) = 0 (12)

This equation represents the equation of a surface on which the point P lies. To verify

this, we first note that the increments (δx, δy, δz) in (x,y,z) are related by the relation

∂F
∂x

δx+
∂F
∂y

δy +
∂F
∂z

δz = 0

in which any two can be chosen arbitrarily. Thus, in every neighbourhood of the point

P , there exists points P ′(x+ ξ,y + η,z+ ζ) satisfying the relation (12) in which any two

of the variables, ξ, η, ζ can be chosen arbitrarily and third is given by

ξ
∂F
∂x

+ η
∂F
∂y

+ ζ
∂F
∂z

= 0.
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The projection of the initial direction P P ′ on the xy-plane can be chosen in arbitrary

way. Hence the equation (12) represents a relation satisfied by points lying on the

surface.

Next, consider a set of relations of the type

x = f1(u, v), y = f2(u, v), z = f3(u, v) (13)

such that there corresponds a set of values to each pair of u, v and hence a point in

space. However, it is to be noted that every point in space does not correspond to a

pair of values of u and v. The solutions of the first two equations of (13) express u and

v as functions of x and y of the form

u = F1(x,y), v = F2(x,y)

which, when substituted in the third equation of (13) determines z as function of x

and y of the type

z = f (x,y).

Thus the functional relation (12) between the coordinates shows that the point (x,y,z)

lies on a surface and that any point determined from them always lies on a fixed sur-

face.

Equations (13) represent parametric equations of the surface. It is to be noted that

parametric equations of a surface are not unique. For example, the two sets of para-

metric equations

x = asinu cosv, y = b sinu sinv, z = ccosu

and x =
2av
1+ v2

sinu, y =
2bv
1+ v2

cosu, z = c
1− v2

1+ v2

lead to the same ellipsoidal surface x2

a2
+ y2

b2
+ z2

c2
= 1.

A surface may be thought to be generated by a curve. Suppose, a point with coor-

dinates (x,y,z) satisfying the equation (12) lies on a plane z = k, where k is constant.

Then

F(x,y,k) = 0, z = k (14)

which shows that the point (x,y,z) lies on a curve Γ in the plane z = k. For example,

if we consider an elliptic paraboloid E : x2

a2
+ y2

b2
= 2z

c , where c is constant, then the

9



Chapter 1 Basic Concepts of Partial Differential Equations

section of this elliptic paraboloid by the plane z = k is given by

x2

a2
+
y2

b2
=
2k
c
, z = k (15)

which represents an ellipse with centre at the point (0,0, k) if k is positive. Thus the

whole surface of E is generated by ellipses like (15) with centres on the z-axis as k

varies.

Fig. 1

Alternatively, we can say that the curve represented by equations (14) is obtained

by the intersection of the surface (12) with a plane z = k, or more generally, the curve

may be thought of the intersection of two surfaces. For, if a point (x,y,z) lies on both

the surfaces S1 : F1(x,y,z) = 0 and S2 : F2(x,y,z) = 0, then the points common to both

S1 and S2 must satisfy the equations

F1(x,y,z) = 0, F2(x,y,z) = 0

so that the locus of a point whose coordinates satisfy these equations is a curve in

space.

We may represent a curve by parametric equations of the form

x = f1(t), y = f2(t), z = f3(t), (16)

t being a continuous variable. For, if a point P has coordinates (x,y,z), then by elimi-

nating t between the equations x = f1(t), y = f2(t) and x = f1(t), z = f3(t), we find that

the point P lies on a curve whose equations are

ϕ1(x,y) = 0, ϕ2(x,z) = 0.
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Now, consider a point P on the curve, taken to be arbitrary,

x = x(s), y = y(s), z = z(s), (17)

s being the arc length parameter, measured from some fixed point P0 along the curve

and Q (x(s+ δs), y(s+ δs), z(s+ δs)) be another point on it such that arcPQ = δs and

chord PQ = δL.

Fig. 2 Fig. 3

Then lim
δs→0

δL
δs = 1. Now the direction cosines of the chord PQ are

x(s+ δs)− x(s)
δL

,
y(s+ δs)− y(s)

δL
,
z(s+ δs)− z(s)

δL

i.e.
δs
δL

{
dx
ds

+ o(δs),
dy

ds
+ o(δs),

dz
ds

+ o(δs)
}

(by Mclaurin’s theorem)

⇒ dx
ds

,
dy

ds
,
dz
ds

as δs→ 0, i.e. Q→ P

and so the chord PQ takes the direction of the tangent to the curve at P . Hence, the

direction cosines of the tangent to the curve at the point P (x,y,z) are (dxds ,
dy
ds ,

dz
ds ). Thus,

the arbitrariness of the curve (17) is true.

Next, let us suppose that the curve Γ given by the equations (17) lies on the surface

S : F(x,y,z) = 0 so that the point (x(s), y(s), z(s)) lies on it and hence

F (x(s), y(s), z(s)) = 0. (18)

If the curve Γ lies entirely on the surface S, then the equation (18) becomes an identity

for all values of s. Differentiating (18) with respect to s, we get

∂F
∂x

dx
ds

+
∂F
∂y

dy

ds
+
∂F
∂z

dz
ds

= 0 (19)
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Thus the tangent to the curve Γ at the point P is perpendicular to the line of direction

ratios
(
∂F
∂x ,

∂F
∂y ,

∂F
∂z

)
. The curve Γ is arbitrary except that it passes through the point P

and lies entirely on the surface S. Also, since the line with direction ratios
(
∂F
∂x ,

∂F
∂y ,

∂F
∂z

)
is perpendicular to the tangent to every curve lying on S and passes through P , so this

must be normal to the surface S at P .

Now, suppose the surface S has the equation z = f (x,y) so that

F(x,y,z) = f (x,y)− z = 0. (20)

Then the direction cosines of the normal at any point (x,y,z) of the surface are

1√(
∂F
∂x

)2
+
(
∂F
∂y

)2
+
(
∂F
∂z

)2
(
∂F
∂x

,
∂F
∂y

,
∂F
∂z

)
=

1√
p2 + q2 +1

(p,q, −1) , (21)

where ∂z
∂x = p, ∂z

∂y = q and since ∂F
∂x = p, ∂F

∂x = q, ∂F
∂z = −1.

The equation of the tangent planeΠ at the point (x,y,z) to the surface S : F(x,y,z) =

0 is

(X − x)∂F
∂x

+ (Y − y)∂F
∂y

+ (Z − z)∂F
∂z

= 0 (22)

(X,Y ,Z) being the coordinates of another point on Π. Similarly, the tangent plane Π,

at the point (x,y,z) to the surface S1 : G(x,y,z) = 0 has the equation

(X − x)∂G
∂x

+ (Y − y)∂G
∂y

+ (Z − z)∂G
∂z

= 0 (23)

The intersection of the planes Π and Π1 is the line L tangent at P to the curve Γ

generated by the surfaces S and S1, the equation of the line being

(X − x)
∂(F,G)
∂(y,z)

=
(Y − y)
∂(F,G)
∂(z,x)

=
(Z − z)
∂(F,G)
∂(x,y)

(24)

Thus the line has direction cosines
{
∂(F,G)
∂(y,z) ,

∂(F,G)
∂(z,x) ,

∂(F,G)
∂(x,y)

}
.

Example 5: Show that the condition that the surfaces F(x,y,z) = 0 and G(x,y,z) = 0

should touch is that the eliminant of x,y,z from these equations and the equations

Fx : Gx = Fy : Gy = Fz : Gz should hold.

Hence find the condition that the plane lx+my+nz+p = 0 should touch the central

conicoid ax2 + by2 + cz2 = 1

12



Chapter 1 Basic Concepts of Partial Differential Equations

Solution: First part.

If the given surfaces touch each other at some point (x,y,z), then they must have the

common tangent at this point and so the equations

(X − x)∂F
∂x

+ (Y − y)∂F
∂y

+ (Z − z)∂F
∂z

= 0 and (X − x)∂G
∂x

+ (Y − y)∂G
∂y

+ (Z − z)∂G
∂z

= 0

must be identical and, therefore, Fx : Gx = Fy : Gy = Fz : Gz.

Thus, the required equation is obtained by eliminating x,y,z from the given equa-

tions of surfaces and the equations Fx : Gx = Fy : Gy = Fz : Gz.

Second part.

Let F(x,y,z) = lx +my + nz + p = 0 and G(x,y,z) = ax2 + by2 + cz2 − 1 = 0. These two

surfaces touch each other at the point if the condition Fx : Gx = Fy : Gy = Fz : Gz does

hold, i.e. if

l
ax

=
m
by

=
n
cz

=
1
k
, (say), where k is constant

Thus x = kl/a, y = km/b, z = kn/c and then the equation F(x,y,z) = 0 gives k = −1p
(
l2
a + m2

b + n2
c

)
.

Lastly, from the equation G(x,y,z) = 0, we get

k2
(
l2

a
+
m2

b
+
n2

c

)
= 1⇒ p2 =

l2

a
+
m2

b
+
n2

c

This is the required condition.
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