

Dr. Ranjana Singh Assistant Professor

Department of Physics HD Jain College Ara, Bihar, India

MJCPHY06 Electrodynamics and Electromagnetism

Semester IV

MJCPHY06:

Electrodynamics and Electromagnetism

Course Title	Credit	Credit Distribution	
		Theory	Practical
Electrodynamics and Electromagnetism	5	5	0

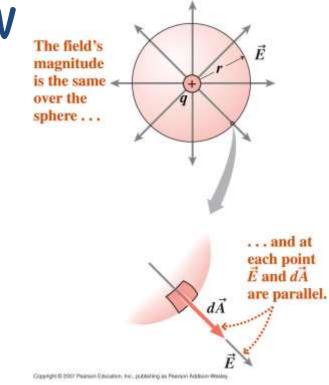
Course Outcomes

After completing the course, the students will be able to:

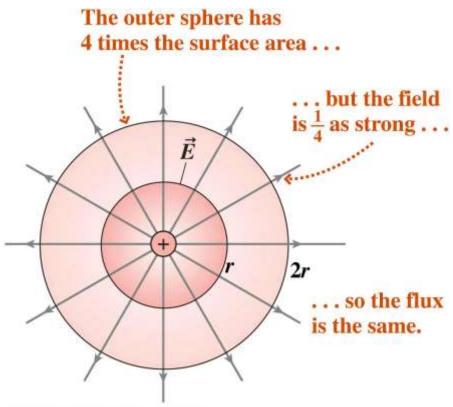
- CO1: Establish and analyse four Maxwell's equations of electromagnetism.
- CO2: Uunderstand the propagation of electromagnetic waves in vacuum, dielectrics, conductors and also in guided media and the phenomenon of reflection and refraction of plane waves at different boundaries.
- CO3: Understand the importance of energy flow (Poynting Theorem) and its usefulness.
- CO4: Get background for further studies and research in different subject areas.

Unit	Topics to be covered	No. of Lectures
1	Maxwell's Equations:Equation of continuity, Displacement Current Maxwell's equations in differential and Integral forms; Vector and scalar potentials, Poynting theorem and Poynting vector, energy conservation (qualitative idea of momentum conservation). Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field Energy Density, Momentum Density, Description of Lorentz force.	10
2	Electromagnetic Wave Propagation in unbounded media: Propagation of plane EM waves in free space, and dielectrics ,Transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation of EM wave through conducting media, relaxation time, skin depth.	14
3	EM Wave Propagation in Bounded Media: Boundary conditions at a plane interface between two media. Reflection and Refraction of plane waves at plane interface between two dielectric media — Laws of Reflection and Refraction. Fresnel's Formulae for perpendicular & parallel polarization cases, Brewster's law. Reflection & Transmission coefficients. Total internal reflection. Metallic reflection (normal Incidence).	
4	Polarization of Electromagnetic Waves: Description of Linear, Circular and Elliptical Polarization. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction.	10

5	Transmission Line: Propagation of e.m. wave through transmission line, reflection coefficient, standing wave, characteristic impedance, propagation constant. Wave Guides: Fundamentals of wave guides, Condition of continuity at the interface. Expressions for field components, TE and TM modes. Propagation properties, cutoff frequency,. Field energy and Power transmission. Optical Fibres: Numerical Aperture. Step and Graded Indices (Definitions Only). Single and Multiple Mode Fibres (Concept and Definition Only).	12
	Total	60


Suggested Books:

- 1. Introduction to Electrodynamics, D.J. Griffiths, Benjamin Cummings. ,
- 2. Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, Springer
- 3. Electromagnetic Fields & Waves, P. Lorrain & D. Corson, W.H. Freeman& Co.
- 4. Electromagnetics, J. A. Edminster, Schaum Series, Tata McGraw Hill.
- Electromagnetic field theory fundamentals, B. Guru and H. Hiziroglu, Cambridge University Press.
- 6. Electrodynamics and Plasma Physics S.L.Kakan ,C. Herajan, CBS publisher
- 7. Electrodynamics :K.K Chopra &G.C Aggrawal
- 8. Classical Electrodynamics J D Jakson Wiley


w Trozi

Gauss's law

We have shown that the number of field lines emerging from a closed surface is proportional to the net charge enclosed or The electric flux through any closed surface is proportional to the charge enclosed

Gauss's law follows from the inverse square aspect of Coulomb's law

Copyright @ 2007 Pearson Education, Inc., publishing as Pearson Addison-Weeky

All particles contribute to the electric field at point P on the surface.

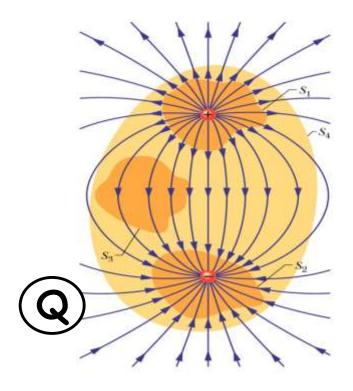
The net flux of electric field through the surface due to q_3 and q_4 is zero.

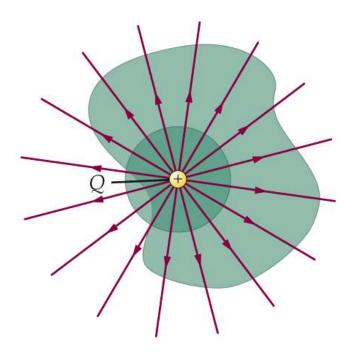
The net flux of electric field through the surface due to q_1 and q_2 is proportional to $(q_1 + q_2)$.

+
$$q_4$$

+ q_3
+ q_1
+ q_1
+ q_2
/ Gaussian
surface

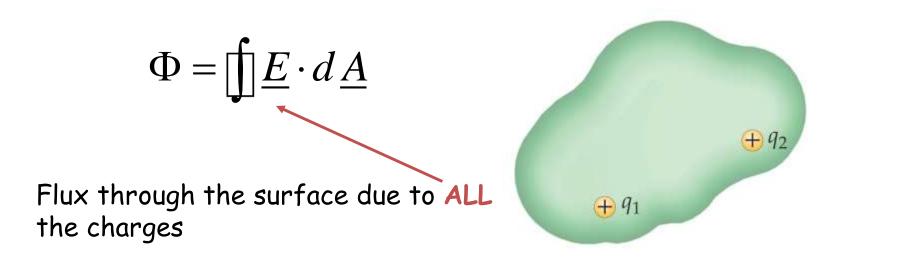
$$\oint \underline{E} \cdot d\underline{A} = \frac{q_{enc}}{\varepsilon_0} \quad \text{Gauss' Law}$$


Gauss's Law


Gauss' Law relates the net flux Φ of an electric field through a closed surface to the net charge q_{enc} that is enclosed by that surface

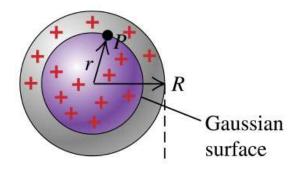
$$\Phi = \frac{q_{enc}}{\varepsilon_0}$$

$\oint \underline{E} \cdot d\underline{A} = \frac{q_{enc}}{\varepsilon_0}$	Gauss' Law


- in vacuum (or air)

The net number of electric field lines out of each surface is the same

> SHAPE OF SURFACE DOESN'T MATTER

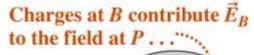


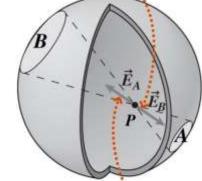
this charge contributes **ZERO FLUX** as every field line from it that enters the surface at one point, leaves at another

 $+ 9_3$

Example 21.1 Field of a uniformly charged sphere

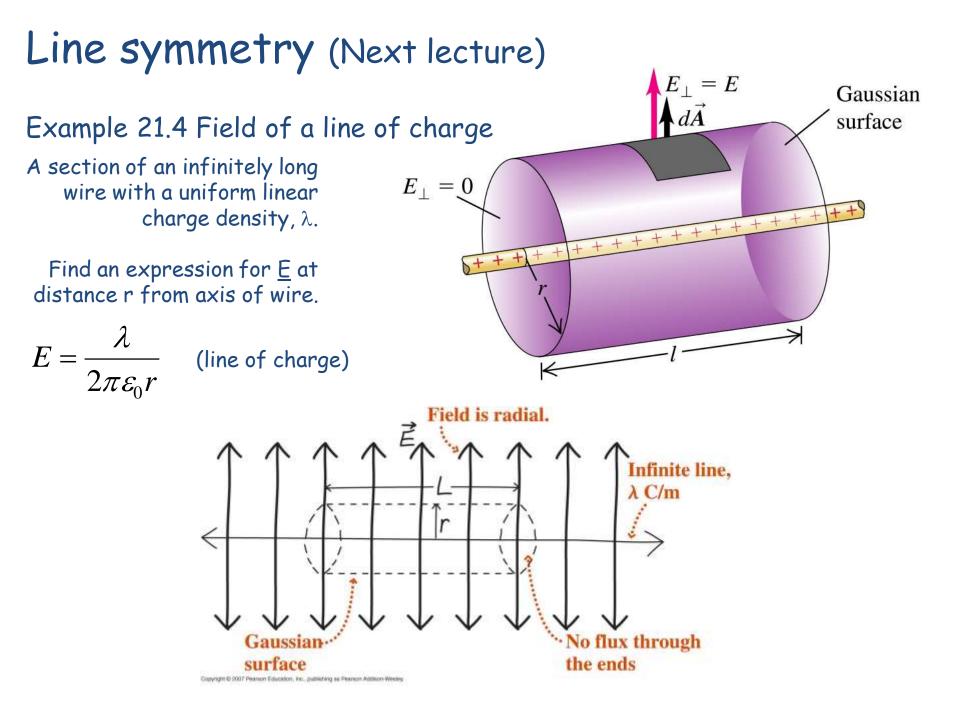
Total charge Q Radius R




Done on board in lecture

Example 21.2 Field of a hollow spherical sphere

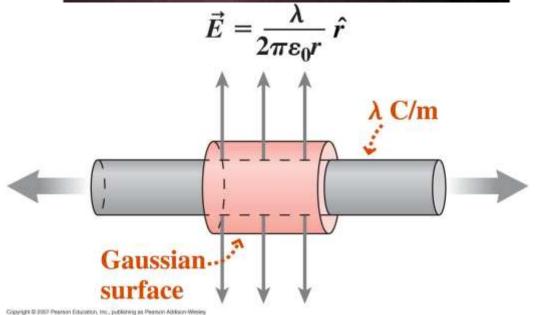
From Gauss's law, E = 0 inside shell



te \vec{E}_A .

Read Example 21.3 Field of a point charge within a shell

and TIP: SYMMETRY MATTERS!


Applying Gauss' Law: cylindrical symmetry

$$E = \frac{\lambda}{2\pi\varepsilon_0 r} \quad \text{(line of charge)}$$

(Compare this result with that obtained using Coulomb's law in Example 20.7, when wire is infinitely long.)

